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INTRODUCTION 

The analysis of steady flows of non-Newtonian fluids with viscoelastic properties often 
requires the use of extremely elaborate numerical schemes. The difficulties encountered in 
such analyses are due, in part, to the dependency of the flow on its own history. Thus an 
iterative procedure is necessary, since some approximation to the velocity field must be 
known to establish the necessary material parameters. 

These history-dependent parameters must be obtained for each particle through an 
integration along that particle’s stream line. In this paper we present some finite element 
schemes for carrying out such integrations in a very straightforward and efficient manner. 
These techniques do not constitute a new algorithm for the analysis of viscoelastic flows but 
can be used within existing algorithms. The procedures appear to be rather general and look 
promising for a wide range of applications. 

CONVECTIVE INTEGRATION 

In this section we show how the integration of the first order equations for the material 
derivative of a scalar variable can be used to obtain functions which are of importance in the 
analysis of steady flows with applications in viscoelasticity. The governing equation is 

with 
A ( x ) = A ,  on 6, 

where & are the Cartesian components of the velocity, assumed known, A(x) is the 
unknown scalar function, and f(x) is the known convected (material) time derivative of A(x). 
x represents the set of spatial coordinates, x, fixed in space. A is specified on that segment of 
the boundary, a,, through which the fluid enters the control volume. The requirement for 
this boundary condition excludes, for the present, consideration of flows having closed 
streamlines within the control volume. 
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A finite element approximation for A(x) can be given as 

A (x) + N,A, (2) 

where N, are the basis functions associated with node a, and A, are the nodal values of the 
approximations to A(x). Repeated subscripts are used to indicate a summation over all 
nodes. Greek letters will be used to indicate nodal values; lower case Latin letters will 
indicate components of Cartesian tensors. 

The application of Galerkin's method to equation (1) with N, used as weighting functions 
gives 

j v N p u i ( x ) - A ,  m a  d V =  
ax, (3)  

or 

where 

and 

In most cases of practical interest, ~ ( x )  will be given by a finite element approximation 
over the same mesh as that used for A,. However, it is not generally necessary for the order 
of approximation used for the two functions to be the same. 

We now consider three examples of scalar functions for the variable A(x). 

Residence time 

The residence time of a material particle is that time which has elapsed between the 
particle's entry into the control volume and the time at its current position. We are 
concerned here with a residence time field, in contrast to the more usual engineering use of 
the term, which refers only to residence time values on the exit boundary of the domain. 
Clearly, the material derivative of the residence time is simply unity, hence 

aR 
u.-=1,  in V ' a& 

R =0, on S, 

Ejfective strain 

We define the effective strain as the integral of the second invariant of the rate of 
deformation tensor. This quantity can play a significant role in the analysis of plastic flows of 
metals during forming processes, where it is the principal variable related to the phenome- 
non known as work hardening. (Strictly speaking, the effective strain only contains the plastic 
strain developed within the material. This can be obtained by subtracting the elastic 
component calculated from the state of stress.) Our governing equation for effective strain is 

e,=O, on Se 
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where 

8.. =- -+A 
I’ 2 l rui axj axi 

Entrance co-ordinates 

Each particle in a flow field can be considered to carry with it the co-ordinates of the point 
where it entered the control volume. Hence the material derivative of a particle’s entrance 
co-ordinates is zero, giving us 

and 

Two uses for the entrance co-ordinates are worth noting. Contour plots of constant X,, Y, 
and/or Z, represent stream lines for flows without recirculation. In turn, knowledge of the 
entrance co-ordinates of a particle identifies the stream line with which it is associated. 

A second use is in determining the material co-ordinates, which in the present context we 
take to be the co-ordinates that each particle in the control volume had at some earlier 
specified time outside the control volume. If the flow of the fluid before entering the control 
volume is steady in the Lagrangian sense, then it is simple to integrate upstream from a 
particle’s entrance co-ordinates to obtain its earlier position. The range of integration is from 
the moment of entry back to the specified time, and the moment of entry is the current time 
less the residence time. It should be noted that a number of problems of practical interest 
have very simple flow fields prior to entering the control volume, such as rigid body 
translation or Poiseuille flow. 

Example 

One of the most significant computational aspects of the integration described above is that 
the finite element matrix, K, is not dependent on the specific applications. Therefore, once it 
has been assembled and factored, all of the above analyses can be conducted with relatively 
little computer expense. To illustrate the above methods we consider two examples. The 
velocity fields for both were obtained by finite element analyses of a Newtonian fluid. 

Consider first a fluid in plane flow passing through a contraction as shown in Figure l(a). 
The flow analysis used a flat entrance velocity profile and included a slip velocity at the wall, 
which produced a downstream velocity profile as indicated in Figure l(b). Residence times, 
as well as various strain and deformation quantities, go to infinity as velocity tends to zero on 
a non-slip wall, and the present approach clearly has a limitation here. It has been found 
though that solutions can be obtained for the no-slip case. The singularity at the wall renders 
results at neighbouring nodes inaccurate, but the solutions may still be adequate for certain 
applications. 
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Figure l(a). Domain of the planar flow contraction 
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Figure l(b). Exit velocity profile 
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Figure l(c). Dimensionless residence 
time profile at exit 

The finite element mesh used for the present analysis is shown in Figure 2(a). Quadratic 
approximations were used for velocity and the convected variables. The residence time field 
is shown in Figure 2(b). Because of the small wall slip velocity, residence time becomes very 
large near the down stream wall. Figure l(c> shows the profile in this vicinity. Stream-lines 
obtained by plots of constant entrance co-ordinates are shown in Figure 2(c). 

Because of the small slip velocity in this previous example, the material co-ordinates 
produce an extremely distorted mesh. Therefore, to produce a more pleasing illustration, we 
chose the problem illustrated in Figure 3 .  Here a much more uniform velocity field is 
obtained. Again the flow is planar and a Newtonian fluid was assumed. The finite element 
mesh is shown in Figure 4(a). Quadratic approximations were used for velocity and linear 
approximations were used for the convected variables. The residence time field and stream 
lines are shown in Figures 4(b) and 4(c). The mesh corresponding to the material co- 
ordinates which the nodes would have had before entering the control volume is shown in 
Figure 4(d). This mesh was obtained using the assumption that the material enters the 
control volume with rigid body motion. Note that meshes representing the material 
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co-ordinates can be used to obtain the displacement functions and hence their gradients and 
resultingfinite strains. Furthermore, these quantities are easily obtained at the quadraturepoints 
of the control volume mesh (Figure 4(a)) since the material co-ordinates are given as nodal point 
values. 

Figure 2(a). Finite element mesh for the problem shown in Figure l(a) 

I 

Figure 2(b). Contours of residence time 

Figure 2(c). Streamlines 

CALCULATION OF STRESS IN VISCOELASTIC FLOWS 

Differential models 

Differential formulations of constitutive equations for viscoelastic fluids involve stress 
implicitly. To obtain the stress field corresponding to a given flow field it is necessary, 
therefore, to solve a differential equation with appropriate boundary conditions. Shimazaki 
and Thompson' showed how this could be accomplished for a corotational Maxwell fluid. As 
in the previous section, the method involves the integration of a first order equation by the 

7.5 RAD 

1.0 - 
Figure 3. Geometry of a rolling problem 
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Figure 4(a). Finite element mesh for the problem shown in Figure 3 

Figure 4(b). Contours of residence time 

Figure 4(c). Streamlines 

Figure 4(d). Material co-ordinates. Form of the mesh Figure 4(c) before entry to the 
problem domain 

finite element method. Applied to either a corotational or codeformational Maxwell fluid, it 
is necessary to solve 

In the above, is the viscosity and G is the shear modulus. When C,  = C2 = 0-5, the term in 
the brackets is the Jaumann derivative used for the corotational model. When C 1 = l  and 
C2=0, the term is the upper convective derivative, and when CI=O and C2= 1,  it is the 
lower convective derivative, both given by Oldroyd2 and used in the codeformational 
models. 

Substitution of the finite element approximation for stress 

aij (x) + N, i X b , i j  

into the above, gives 

G 
I*. 

+ - [ N, 6i, 6 j , ] ~ ~ ~ ,  = 2G&i, (1 0) 

where 6,  is the Kronecker delta. Applications of Galerkin's method to this equation, with Np 
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used as the weighting functions, gives 

U 
We shall have further need for K in the next section, when integral formulations of 
constitutive equations are considered. 

The above equations can be used for the analysis of the generalized Maxwell model, if this 
is written as 

Here, and subsequently the box over the stress is used to indicate the derivative as expressed 
in equation (8). It is necessary to specify a!?) on 6, which can be done provided the material 
enters the control volume with a simple viscometric flow which has existed for a sufficiently 
long time. 

Because the material parameters G”) and F ( ~ )  appear on the left-hand side of equation 
12(b), it is necessary to assemble and factor the finite element matrix for each N. This could 
prove costly for large N, in which case the approach for the generalized Maxwell model 
outlined in the next section might be preferable. 

Integral models 

We next consider the evaluation of stress during steady-flow when an integral formulation 
of the constitutive equation is used. We begin by considering a general quasi-linear single 
integral model: 

t‘=t 

ajj ( t )  = $( t  - t’)BimBjpEmp(t’) dt’ (13) 

where the specific form of the transformation tensor B depends on the objective frame of 
reference used, and the integration is the inverse of the convected differentiation indicated 
by the symbol gij. Equation (13) is a consequence of Boltzman’s superposition principle, 
and must be carried out with respect to a given material particle, which we could call particle 
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( t ,  x) indicating that at time t it is at position x. t’ is an earlier time, when the particle was at 
position x’. Equation (13) is derived from the simpler statement 

FZJ(t, t ’ ) =  8 # t ( t - t ’ ) E * , ( t t )  (14) 

It is important to note that equation (14) does not give the current rate of stress change, but 
only that part of it which is due to the rate of deformation E,,(t’) which took place at t’. 

We now consider the relationship between t, t’ and the residence time, R. In equations 
(13) and (14), an important factor is the difference, ( t  - t’), the lapsed time. In the integration 
for particle ( t ,  x), this lapsed time is simply the difference between the residence time value R 
at x, and the value R‘ at x‘, an upstream point on the streamline through x. For steady 
flow, therefore, we may write equation (14) as 

Z,(x, x’) = +(R -R’)Ec,(X’) (15) 

The finite element equation for the solution of equation (15) is 
0 

K p e , i p J c z m p  = Fpi j  
0 

where K is defined by equation I l b  and here 

FBii = I N&(R - R‘)sii d V  
V 

The pseudo-stresses (T: coincide with the true stresses corresponding to the given velocity 
field at the node(s) where residence time has thevalue R used in equations (16), and indeed at all 
points on the contour of residence time R. If we eschew the interpolation procedure which this 
comment suggests, then it seems that in general a solution is required for each and every node of 
the FE mesh. However, the cost may not be as great as at first appiears. Because R occurs only on 
the right-hand side of the equation, the same LDU factored K matrix may be used for each 
solution. Further, when we look at specific forms of the relaxation modulus $(t - t’) we find that it 
is often unnecessary to solve for each and every nodal residence time. 

Consider, for example, the generalized Maxwell fluid: 

with summation over N. 
The right-hand side can be split and written in terms of residence times as previously 

where 

We can now regard H!?) as a field variable, governed by 

Eij  

The corresponding finite element equations are 
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where K is defined by equation l l (b )  and now 

Boundary values for H"' must be specified on 6, which can be done if the upstream flow is 
sufficiently simple. Note that one solution must now be obtained for each relaxation time 
A"', rather than one for each node. For most problems of practical interest N will not 
exceed 3 or 4. Once the HI," values are obtained, the stresses can be calculated via equation 
18(a). 

The techniques described above may be extended in obvious ways to non-linear single 
integral models, where the relaxation modulus incorporates functions of the rate of deforma- 
tion tensor invariants. 

SOLUTION ALGORITHMS FOR STEADY STATE VISCOELASTIC FLOW 
ANALYSES 

Algorithms currently in use for solving the non-linear equations governing flow of viscoelas- 
tic liquids can be placed into two general categories. The first contains the mixed finite 
element methods, which solve the momentum equation and the constitutive equation 
simuitaneously for velocity and The equations are linearized by using the solution 
from the previous iteration to evaluate the dependent parameters. Because these methods 
use differential forms of constitutive theories, it appears that they will not be practical for 
complex fluids such as the generalized Maxwell fluid. Clearly, the repeated solution method 
discussed above for this fluid would not be suitable if a mixed method were used. 

The second category includes those methods which solve the momentum equation and the 
constitutive equation separately. Thus, the momentum equation is solved for velocity with 
values for stress obtained from the solution of the constitutive equations and vice versa. Both 
finite differences6 and finite  element^^*^,^ have been employed for the solution of the 
momentum equation. The constitutive equation has been solved by the finite element 
method when a differential form is used,',' and when integral models are used, it has been 
solved by numerically integrating along  streamline^.^.^ The method based on equation (1 6 )  
appears to incorporate both approaches. 

A difficulty arises when using integral models. This stems from the fact that for the 
solution of the momentum equation, one must have a linearized expression for stress in 
terms of velocity. In general, such linearisations are not easily obtained from integral 
expressions. 

Work on this phase of the research has just begun; therefore we outline only briefly a 
possible general approach. The derivative of the stress at time t is 

0 
The integral has the units of rate of change of stress and we write it as Sij. If equation (20) is 
multiplied by some characteristic time (or relaxation time), A, we can write 
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where 
U 

Ac\a,i = (A S i i  - uii) 

We now have our desired expression. The first terms on the right-hand side are linear in 
velocity and can be retained on the left hand side of the momentum equation. The last terms 
must go on the right hand side of the momentum equation as a pseudo body force. 

Note that it has not yet been necessary to define the characteristic time. Therefore, it can 
be chosen so as to minimize the length of the vector haij, and hence reduce the corrective 
term represented by the pseudo body force. 

For a Maxwell fluid 

(224 Q(t  - t’) = 2Ge-(t-t’)/A 

If A = A, then equation 21(a) becomes 

which is the differential form of the constitutive equation of the Maxwell fluid. 

Unfortunately, the evaluation of Sij will, in general, require additional finite element 
solutions, thereby nearly doubling the cost of the stress analysis. However, these new 
solutions only require additional right-hand sides to be used in the general equation for 
stress, equation (16). 

EXAMPLE 

To illustrate the calculation of stress by the above procedures we chose the problem of 
expanding radial flow shown in Figure 5(a). This choice was made because once the 
assumption of radial flow is imposed, the flow field is determined by continuity and is 
independent of the constitutive equation, thus eliminating the need to iterate to correct stress 
and velocity fields. The problem was treated both as a plane flow problem, with the mesh 
illustrated in Figure 5(b), and as an axisymmetric problem, with the mesh shown in Figure 

A corotational Maxwell fluid was assumed with both the shear modulus and viscosity 
5(c). 

specified as unity. The velocity, assumed known, was taken as 

1.6 
r 

=- 

For the following definition of the Weissenberg number, we therefore have 
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Figure 5(a). Geometry of the radial flow problem. The 
hatched area in the upper view shows the domain of the 
finite element problem treated as a planar flow in Car- 
tesian co-ordinates; in the lower view the hatched area is 

the domain of the axisymmetric version of the problem 

Figure 5(b). Finite element mesh for the planar version of the radial Row problem 

Figure 5(c). Finite element mesh for the axisymmetric version of the radial flow problem 
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The extra stress in the entering material ( I ,  = 1.0) was specified as 

This same stress specification was used for the plane flow problem. However, it was given in 
terms of its rectangular Cartesian components which differed from node to node. 

The velocity was specified exactly at each node from which quadratic approximations were 
made for use in the calculations of residence time and stress. Both the residence time and 
stress were calculated using triangular elements. 

The consitituive equation was used in its integral form. The method outlined for the 
generalized Maxwell fluid was used for both the plane flow and axisymmetric analyses. In 
addition, the node by node approach, outlined for use with a general relaxation function, was 
used for the axisymmetric case. Both axisymmetric analyses gave identical results. It has 
been shown previously' how for this radial flow problem S, is given by an initial value 
ordinary differential equation, and a solution was obtained by a fourth order Runge-Kutta 
method. Results from all three present analyses were within plotting accuracy of the 
Runge-Kutta solution. The residence time field and the radial component of stress are shown 
in Figure 6. 

CONCLUSION 

We have shown in this paper several integration techniques which should prove useful in the 
analysis of flows of viscoelastic fluids. The culmination of these techniques is the ability to 
calculate the stress field associated with a given flow field for a wide range of constitutive 
equations. However, the methods do not apply to regions of fluid flow which are completely 
contained within the control volume. Stagnation points and other regions where the velocity 
goes to zero such as no-slip boundaries, are also excluded. Continued research is being 
conducted to develop methods for incorporating these regions into the analysis. 



VISCOELASTIC FLOWS 177 

ACKNOWLEDGEMENT 

This work was conducted during the first author’s sabbatical leave from Colorado State 
University. Grateful appreciation for this opportunity is acknowledged. The research has also 
been partially sponsored by the Polymer Engineering Directorate of the Science and 
Engineering Research Council (U.K.). 

REFERENCES 

1. Y. Shimazaki and E. G. Thompson, ‘Elasto visco-plastic flow with special attention to boundary conditions’, Int. 

2. J. G. Oldroyd, ‘On the formulation of rheological equations of state’, Roc.  Roy. Soc. A., 200 523-541 (1950). 
3. M. Kawahara and N. Takeuchi, ‘Mixed finite element method for analysis of viscoelastic fluid flow’, Computers 

4. M. J. Crochet and M. Bezy, ‘Numerical solutions for the flow of viscoelastic fluids’, J.  Non-Newtonian Fluid 

5. C .  J. Coleman, ‘A finite element routine for analysing nowNewtonian flows. Pt. 1: Basic method and 

6. H. Court, A. R. Davies and K. Walters, ‘Long range memory effects in flows involving abrupt changes in 

7. M. Viriyayuthakorn and B. Caswell, ‘Finite element simulation of viscoelastic flow’, Diu. Eng. Brown Uniu., 

8. P. R. Dawson and E. G. Thompson, ‘Finite element analysis of steady-state elasto viscoplastic flow by the initial 

J .  Num. Methods in Engng., 17, 97-112 (1981). 

and Fluids, 5 33-45 (1977). 

Mechanics, 5 281-288 (1979). 

preliminary results‘, J. Non-Newtonian Fluid Mechanics. 7 289-31 1 (1980). 

geometry, Pt. 1’, J .  NowNewtonian Fluid Mechanics, 8 95-117 (1981). 

Rept. for National Science Foundation, Research Grant ENG 78-00722 (1979). 

stress rate method’, Int. J .  Num. Meth. Engng., 12, 47-57, 382-383 (1978). 




